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Abstract In the presence of uncertain dynamic

terms and external disturbances, the problem of

trajectory tracking with application to an underactu-

ated underwater vehicle is addressed in this paper.

Based on Lyapunov theory and properties of neural

networks, a nonlinear neural controller is designed,

where multilayer neural networks are adopted to

approximate the unmodeled dynamic terms and

external disturbances. In order to confine the values

of estimated weights within predefined bounds,

smooth projection functions are employed. Moreover,

measurement noises are considered so as to simulate

realistic operation scenario, while filters are designed

to get cleaner states. From the stability analysis, it is

proven that the tracking errors are globally uniformly

ultimately bounded. Numerical examples are provided

to demonstrate the robustness of the controller in the

presence of unmodeled terms, disturbances and mea-

surement noises.

Keywords Multilayer neural networks �Underwater
vehicles � Unmodeled terms � Disturbances �
Measurement noises

1 Introduction

In recent years, the control of autonomous underwater

vehicles (AUVs) has received considerable attention

in academic and engineering areas such as sampling,

water quality monitoring, archaeological surveys and

plume tracing [1–4], etc. Although much effort has

been made toward different types of AUVs including

surface vehicles [5, 6] and underwater vehicles [7–11],

it is challenging to precisely steer an AUV along a

reference trajectory due to the complex dynamics and

uncertainties introduced by internal system and the

external environment. Moreover, many of the AUVs

have fewer inputs than degrees of freedom (DOF)

which makes it more difficult to derive a control law.

In this paper, we research for a solution that addresses

the tracking problem for underactuated underwater

vehicle in the presence of unmodeled dynamics and

time-varying disturbances.

Conventional backstepping technique [12–14] is

one of the most popular approaches to deal with the

control problem of AUVs. For example, backstepping

techniques [13] were used to derive the control law for

an underactuated AUV in three-dimensional space,
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and the proposed controller was able to guarantee the

tracking error within an arbitrarily small neighbor-

hood of zero. However, unknown dynamics and

unpredictable disturbances were not considered. It

should be noted that the presence of uncertainties that

are induced by wind, waves or ocean currents can

cause high-frequency uncertain dynamics, which

consequently affect the performance of model-based

controllers, leading to close-loop instability [15]. The

backstepping technique was also reported in [12]. It

was formulated from the derivation of control law,

where the uncertainties and disturbances were esti-

mated and compensated using an adaptive algorithm.

However, fully actuated models rather than underac-

tuated dynamics were used in the prior arts.

Other control approaches including linear propor-

tional derivative (PD) [16], linear quadratic regulator

(LQR) [17], model predictive control (MPC) [18, 19],

adaptive control [20, 21], H1 [22] and sliding mode

control (SMC) [23–25] have also been presented.

Different types of uncertainties such as unmodeled

dynamics of the tether [16, 19, 20], model parameter

error [18], unknown hydrodynamic coefficient [26]

and ocean current [27] were considered in the studies.

In the Lyapunov-based MPC framework [18], online

optimization was used to improve the trajectory

tracking performance, but the magnitude of the

disturbance caused by ocean current was assumed

constant. By contrast, constant, sinusoidal and a period

of disturbances were tested in [23]. Although specific

dynamics of three DOF lateral AUVs were studied

here, many works focused on model-free control

schemes [16, 26, 28, 29]. For instance, based on

completely unknown dynamic systems, reinforcement

learning (RL) techniques were employed in [29],

where the critic and action neural networks were

designed to approximate an unknown long-term

performance index and controller. Different from

RL-based controller [29–31], disturbance observer

(DOB)-based control methods do not have to use large

feedback gains [32]. In [33], DOB was introduced to

compensate the time-varying external disturbance for

an unmanned surface vehicle. It is noted that the

unmodeled dynamics was separately compensated by

neural network minimum learning parameter method.

Thus, it is more complicated than directly estimating

both of the unmodeled terms and disturbances.

Readers are also referred to [34–40] for other control

methods like transverse function control, output

feedback control, etc.

Research works which applied uniform approxi-

mation ability of fuzzy logic systems (FLSs)

[26, 28, 41–44] and neural networks (NNs) [45–51],

reported promising results on the control of AUVs. As

the controllers in [26, 28] were designed with fully

unknown parametric dynamics and uncertainties,

fuzzy systems were used to approximate ideal back-

stepping control law and unknown lumped dynamics.

When it comes to model-based control, FLSs can also

be applied to estimate uncertainties in the model of

surface vehicle [41], underwater vehicle [42], uncer-

tain high-order nonlinear systems [43] or multi-input

and multi-output (MIMO) nonlinear systems [44].

Single-layer NNs were applied to compensate the

unmodeled terms and external time-varying unmod-

eled forces and moments in [45, 46, 51]. Multilayer

NNs were explored in [47, 48] as a solution for

accomplishing the compensation. However, both of

two tracking errors were semi-globally uniformly

ultimately bounded (SGUUB). Namely, the stability

can only be achieved within a certain region. In

addition, neither of them can guarantee the weights of

multilayer NNs to be bounded. A neural network-

based target tracking controller and a saturated

trajectory tracking controller were proposed, respec-

tively, in [49, 50]. MATLAB simulations and com-

parative studies were provided to validate the efficacy

of the proposed theoretical results therein. However,

in [49], the kinematic model for altitude was simpli-

fied, and only 5-DOF was considered. On the other

hand, in [50], the authors chose fully actuated

underwater vehicle model as their study model, which

cannot be applied to control underactuated underwater

vehicles. In [52], a recurrent neural network with

convolution was proposed for unmanned underwater

vehicle online obstacle avoidance on the vertical

plane. The model was simplified by ignoring the

heave, roll and pitch motions. Moreover, hybrid fuzzy

neural-network-based controller was established in

[53, 54]. Nevertheless, all these aforementioned

studies do not consider the measurement noises that

inevitably would have existed in the process of sensing

data.

Motivated by the above-mentioned significant

research works and detailed discussions, the main

contribution of this paper is threefold:

123

3556 K. Duan et al.



www.manaraa.com

(1) A nonlinear smooth switching function-based

multilayer NNs tracking controller is designed

for an underactuated underwater vehicle, where

a regular multilayer NNs controller works

within the NNs active region, while a robust

controller works outside the NNs active region.

Through Lyapunov stability analysis, the glob-

ally uniformly ultimately bounded is guaran-

teed, while the controllers proposed in

[16, 17, 47, 48] can only obtain local stability

and semi-globally uniformly ultimately

bounded, respectively.

(2) Uncertain dynamic terms and external time-

varying disturbances induced by wind, waves

and currents are considered and estimated by

multilayer NNs. Unlike the constant assumption

of the disturbances in [18, 55], we consider

complicated but more realistic time variant

disturbances. Compared with the conventional

single-layer NNs [51] and multilayer NNs

[47, 48], in this paper smooth projections are

introduced to limit the estimated weights

remaining within predefined bounds.

(3) Measurement noises are considered to simulate

a more realistic application scenario. To clean

the measured states, noise filters are designed.

By contrast, none of [41–51] takes into account

the harmful effects of measurement noises.

In summary, a multilayer NN-based tracking con-

troller, that can meet multiple requirements including

globally uniformly ultimately bounded of the closed-

loop system, disturbance rejection ability and robust-

ness to measurement noises, is proposed.

The rest of the paper is organized as follows:

Sect. 2 introduces notations, vehicle models, neural

networks and the control objective. Section 3 gives the

details of controller design. Section 4 presents numer-

ical examples. Section 5 concludes the work of this

paper and describes the future work.

2 Problem formulation

2.1 Notation

Throughout the paper, the transpose operation for a

given matrix a 2 Rm�n is denoted by a> 2 Rn�m. The

Euclidean norm applying on a vector b 2 Rm is

denoted by kbk ¼
ffiffiffiffiffiffiffiffiffi

b>b
p

, with Rm representing m-

dimensional Euclidean space. For a n-by-n square

matrix c, the trace is defined to be the sum of the

elements on the main diagonal, specified as

trðcÞ ¼
Xn

i¼1
cii ¼ c11 þ c22 þ � � � þ cnn

where cii denotes the entry on the ith row and ith

column of matrix c. The Frobenius norm is defined as

the square root of the sum of the absolute squares of its

elements:

kckF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼1

X

n

j¼1

jcijj2
v

u

u

t

where cij is the entry on the ith row and ith column of

matrix c, with the following property:

trðc>cÞ ¼ kck2F:

In addition, the symbols that are used in this paper are

described in Table 1.

2.2 Mathematical modeling of AUVs

2.2.1 Kinematic equations

Considering an underactuated underwater vehicle, we

first introduce a global coordinate frame fUg and a

body frame fBg. The origin of each frame is located at

the gravity center of a vehicle. Following [56], the

kinematic equations of the vehicle can be written as

_g1 ¼ Jðg2Þm1
_Jðg2Þ ¼ Jðg2ÞSðm2Þ

ð1Þ

where g1 2 R3 denotes the position of the gravity

center. m1; m2 2 R3 are the linear velocity and angular

velocity, respectively. Jðg2Þ is the rotation matrix

from fBg to fUg. Sð�Þ is a skew-symmetric matrix

which is given by

SðkÞ ¼
0 � k3 k2
k3 0 � k1
�k2 k1 0

2

6

4

3

7

5

with the following properties

b>1 Sðb2Þb1 ¼ 0 ð2Þ

and
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Sðb1Þb2 ¼ �Sðb2Þb1 ð3Þ

where b1; b2 2 R3.

Assumption 1 For a specific vehicle, its linear and

angular velocities are always bounded, denoted as

jjm1jj � m1max; jjm2jj � m2max

where m1max; m2max are known positive values.

2.2.2 Dynamic equations

The dynamic equations of the underactuated vehicle

are considered as

M _m1 ¼ �Sðm2ÞMm1 þ nm1Tþ Jðm2Þ>ðb�mgÞuz þ dm1

I _m2 ¼ sþ dm2

ð4Þ

where nm1 ¼ ½ux; uz�, M ¼ MRB þMA 2 R3�3 and

I ¼ IRB þ IA 2 R3�3 represent constant symmetric

positive definite mass and inertia matrices, respec-

tively. MRB ¼ diagðm; m; mÞ and MA ¼
diagð�X _u; �Y _v; �Z _wÞ are rigid-body mass matrix

and added mass matrix, respectively. IRB ¼
diagðIx; Iy; IzÞ and IA ¼ diagð�L _p; �M _q; �N _rÞ
denote rigid-body and added inertia matrix, respec-

tively. T ¼ ½Tx; Tz�, s ¼ ½sx; sy; sz�> are control

inputs. Let b be the buoyant force, mg be the

gravitational force and dm1 ; dm2 be lumped unknown

terms including unmodeled dynamic terms and exter-

nal time-varying disturbances. Figure 1 illustrates the

vehicle model in three-dimensional space. The rota-

tions about xb-axis, yb-axis and zb-axis are represented

by roll, pitch and yaw.

Assumption 2 The lumped unknown terms and their

derivatives are bounded, given as

kdm1k þ k _dm1k� f1; kdm2k þ k _dm2k� f2

where f1; f2 stand for known positive constants.

2.3 Multilayer neural networks

We first define a typical three-layer neural network

structure in Fig. 2. The output of the three-layer NN is

given as [57]

yi ¼
X

N2

j¼1

h

wijr
�

X

N1

k¼1

vjkxk þ hvj
�

þ hwi
i

; i ¼ 1; 2; . . .;N3

ð5Þ

where N1, N2 and N3 denote the numbers of neurons in

input layer, hidden layer and output layer,

Table 1 Descriptions of

symbols
Symbol Description Symbol Description

g1 Position gd Desired trajectory

m1 Linear velocity m2 Angular velocity

Jðg2Þ Rotation matrix Sð�Þ Skew-symmetric matrix

MRB Rigid-body mass matrix MA Added mass matrix

IRB Rigid-body inertia matrix IA Added inertia matrix

T Thrust force input s Torque input

b Buoyant force mg Gravitational force

ux Unit vector ½1; 0; 0�> uy Unit vector ½0; 1; 0�>

uz Unit vector ½0; 0; 1�> W, V Weight matrix

ei Error terms, i ¼ 1; 2; 3 ki Control gains, i ¼ 1; 2; 3

Fig. 1 Trajectory tracking of an underactuated underwater

vehicle. The forces in xb and zb directions are represented by

Tx ¼ Tx1 þ Tx2 and Tz ¼ Tz1 þ Tz2 þ Tz3 þ Tz4, respectively
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respectively. rð�Þ is the activation function, which can
be chosen as sigmoid function 1=ð1þ e�azÞ, hyper-
bolic function tanhðzÞ, radial basis function e�ðz�lÞ2=c2 ,
etc. vjk and wij are the first-to-second layer intercon-

nection weights and the second-to-third layer inter-

connection weights, respectively. hvj and hwi are

threshold offsets. Rewriting (5) in a compact form as

y ¼ W>rðV>xÞ ð6Þ

where x ¼ ½1; x1; x2; . . .; xN1
�>, y ¼ ½y1; y2; . . .; yN3

�>,
and weight matrices W> 2 RN3�ðN2þ1Þ, V> 2
RN2�ðN1þ1Þ contain all the elements wij and vjk,

respectively. It should be noted that hvj, hwi are

included by assigning one as the first term in the vector

rðV>xÞ. For a general function fðxÞ : Rn ! Rm, it can

be approximated by

fðxÞ ¼ W>rðV>xÞ þ �ðxÞ ð7Þ

where �ðxÞ is a neural network functional reconstruc-

tion error vector, satisfying k�ðxÞk� �max, and �max is a

positive number; x and f are the inputs and outputs.

Assumption 3 The weight matrices W, V satisfy

kWkF �Wmax, kVkF �Vmax, whereWmax and Vmax are

positive constants.

2.4 Control objective

The control objective is to design control laws for

thrust force T, torque s and update laws for W, V, so

that the underactuated underwater vehicle is able to

track a given reference trajectory gdðtÞ and the

position error kg1 � gdðtÞk converges to a neighbor-

hood of the origin that can be made arbitrarily small.

Assumption 4 The reference trajectory gdðtÞ is

sufficiently smooth and its derivatives are bounded,

given as

k _gdðtÞk� n1; k€gdðtÞk� n2; kgð3Þd ðtÞk� n3; kgð4Þd ðtÞk� n4

where n1; n2; n3; n4 are all positive constants.

Remark 1 For a specific vehicle, due to the limita-

tion of the vehicle’s physical structure, the vehicle

cannot track any faster trajectories. That’s why we set

boundedness for the reference’s derivatives in

Assumption 4.

3 Multilayer NNs-based controller

This section describes the design of a multilayer NN-

based tracking controller for an underactuated AUV.

The multilayer NNs are resorted to estimate the

lumped unmodeled dynamics and time-varying dis-

turbances, where projections are applied to ensure the

estimated weights to be bounded. Figure 3 illustrates

the main blocks of the control system.

3.1 Controller design

Step 1We first define the position tracking error in the

body-fixed frame as

e1 ¼ Jðg2Þ>ðg1 � gdÞ; ð8Þ

and an additional error term is given as

s ¼ _e1 þ Ke1 ð9Þ

where K is an unknown function that will be specified

later, and _e1,

_e1 ¼ �Sðm2Þe1 þ m1 � Jðg2Þ> _gd: ð10Þ

Inspired by [58], here we want to drive s to a constant

vector q 2 R3 instead of zero so as to obtain a

continuous controller. Then, we define the second

error term as

e2 ¼ s� q ð11Þ

whose time derivative is

Fig. 2 The structure of the three-layer neural network
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_e2 ¼ �Sð _m2Þe1 � Sðm2Þ _e1 þM�1ð�Sðm2ÞMm1 þ nm1T

þ Jðg2Þ>ðb�mgÞuz þ dm1Þ þ Sðm2ÞJðg2Þ> _gd

� Jðg2Þ>€gd þ _Ke1 þ K _e1:

ð12Þ

Step 2 In order to obtain the thrust force, the following

Lyapunov function is chosen as

Va ¼
1

2
e>1 e1 þ

1

2
e>2 M

2e2: ð13Þ

Taking the time derivative of Va, one has

_Va ¼ �k2e
>
2 e2 þ e>1 q� e>1 Ke1 þ e>2 M

�

M�1e1

�MSð _m2Þe1 �MSðm2Þ _e1
� Sðm2ÞMm1 þ nm1Tþ Jðg2Þ

>ðb�mgÞuz
þ dm1 þMSðm2ÞJðg2Þ> _gd �MJðg2Þ>€gd
þM _Ke1 þMK _e1 þ k2M

�1e2

�

:

ð14Þ

To ensure ð�e>1 Ke1Þ is negative definite and eliminate

ð�MSð _m2Þe1 �MSðm2Þ _e1Þ, we choose

K ¼ Sðm2Þ þ k1M
�1 ð15Þ

whose time derivative yields

_K ¼ Sð _m2Þ ð16Þ

where k1 is a positive constant. Substituting (15) and

(16) into (14), one obtains

_Va ¼ �a1 þ e>1 q� e>1 Sðm2Þe1
þ e>2 M

�

M�1e1 �MSð _m2Þe1
�MSðm2Þ _e1 � Sðm2ÞMm1 þ nm1T

þ Jðg2Þ>ðb�mgÞuz
þ dm1 þMSðm2ÞJðg2Þ

> _gd �MJðg2Þ
>€gd

þMSð _m2Þe1 þMðSðm2Þ þ k1M
�1Þ _e1

þ k2M
�1e2

�

ð17Þ

which can be simplified as

_Va ¼ �a1 þ e>1 q� e>1 Sðm2Þe1 þ e>2 M
�

M�1e1

� Sðm2ÞMm1 þ nm1Tþ Jðg2Þ>ðb�mgÞuz
þ dm1 þMSðm2ÞJðg2Þ> _gd �MJðg2Þ>€gd
þ k1 _e1 þ k2M

�1e2

�

:

ð18Þ

Combining (9) and (15), one gets

m1 ¼ e2 þ Jðg2Þ> _gd � k1M
�1e1 þ q: ð19Þ

Substituting (10), (19) into (18), _Va becomes

Reference 
Trajectory

NN Based Tracking 
Controller

Adap�ve 
Laws

RFNN 
Approxima�on

Kinema�c Model Dynamic Model

AUV System

Fig. 3 Block diagram of NNs-based trajectory tracking system
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_Va ¼ �a1 þ e>1 qþ e>2 M
�

� Sðm2ÞMe2

� Sðm2ÞMðJðg2Þ> _gd þ qÞ þ nm1T

þ Jðg2Þ
>ðb�mgÞuz þMSðm2ÞJðg2Þ

> _gd

�MJðg2Þ>€gd þ k1ðm1 � Jðg2Þ> _gdÞ

þ k2M
�1e2 þM�1e1 þ dm1

�

:

ð20Þ

It is noted that e>2 MSðm2ÞMe2 ¼ 0, and then it can be

obtained that

_Va ¼ �a1 þ e>1 qþ e>2 M
�

� Sðm2ÞMðJðg2Þ> _gd þ qÞ

þ nm1Tþ Jðg2Þ>ðb�mgÞuz
þMSðm2ÞJðg2Þ> _gd �MJðg2Þ>€gd
þ k1ðm1 � Jðg2Þ> _gdÞ þ k2M

�1e2 þM�1e1 þ dm1

�

;

ð21Þ

where a1 ¼ k1e>1 M
�1e1 þ k2e>2 e2 and k2 is a positive

number. Let

D ¼ SðMqÞ þ SðMJðg2Þ> _gdÞ �MSðJðg2Þ> _gdÞ;

then _Va can be reorganized as

_Va ¼ �a1 þ e>1 qþ e>2 M
�

H-þ Jðg2Þ>ðb�mgÞuz

�MJðg2Þ>€gd
þ k1ðm1 � Jðg2Þ> _gdÞ þ k2M

�1e2 þM�1e1 þ f1

�

ð22Þ

where f1 ¼ dm1 and

H ¼ ½nm1 ; D�; - ¼ ½T>; m>2 �
>: ð23Þ

Here, - is regarded as virtual input. It should be noted

that f1 is unknown, and therefore we use multilayer NNs

to approximate it, by using the following function:

f1 ¼ W>
1 rðV>

1 x1Þ þ �1ðx1Þ ð24Þ

where x1 ¼ ½1; m>1 �
> 2 R4�1. Correspondingly, the

NNs approximation for f1 is given as

f̂1 ¼ cW>
1 rðbV>

1 x1Þ ð25Þ

where cW1 and bV1 are designed estimations of the

ideal weight matrix,fW1 ¼ cW1 �W1, eV1 ¼ bV1 � V1

are the estimation error. However, it is worthy

pointing out that because the NNs approximation only

holds in a certain compact set. Therefore, if we use the

method from (25) directly, global stability cannot be

obtained. In light of this consideration and inspired by

[51, 59], we introduce

f̂n1 ¼ #ðjjx1jjÞcW>
1 rðbV>

1 x1Þ þ
�

1� #ðjjx1jjÞ
�

dn1

ð26Þ

where 1 is an arbitrarily small positive constant,

dn1 ¼
h

fn11 tanh
� u>x M

>e2fn11
1

�

;

fn11 tanh
� u>y M

>e2fn12
1

�

;

fn11 tanh
� u>z M

>e2fn13
1

�i

and

#ðjjxjjÞ ¼

1; jjxjj � a1

erðjjxjjÞ

ejjxjj þ e1�rðjjxjjÞ ; a1\jjxjj\a2

0; jjxjj � a2

8

>

>

<

>

>

:

with rðjjxjjÞ ¼ �ða21 � a2
2Þðjjxjj2 � a1

2Þ�1
, a2 [ a1

[ 0, ju>x f1j � fn11 ; ju>y f1j � fn12 ; ju>z f1j � fn13 , and

fn11 ; fn12 ; fn13 are known positive numbers.

To obtain the update law for cW1, bV1, the second

Lyapunov function is defined as

Vb ¼ Va þ
1

2
trðfW>

1 C
�1
W1

fW1Þ þ
1

2
trðeV>

1 C
�1
V1

eV1Þ:

ð27Þ

Taking the time derivative of Vb, one has

_Vb � � a1 þ e>1 qþ #ðjjx1jjÞ
�

e>2 M�1ðx1Þ � e>2 Ml1

�

þ e>2 M
�

H-þ Jðg2Þ>ðb�mgÞuz �MJðg2Þ>€gd
þ k1ðm1 � Jðg2Þ> _gdÞ þ k2M

�1e2

þM�1e1 þ #ðjjx1jjÞcW>
1 rðbV>

1 x1Þ

þ ð1� #ðjjx1ÞjjÞdn1
�

� e>2 M
fW>

1

�

br1 � br
0

1
bV>
1 x1

�

� e>2 M
cW>

1 br
0

1
eV>
1 x1 þ trðfW>

1 C
�1
W1

_
cW1Þ

þ trðeV>
1 C

�1
V1

_
bV1Þ þ ð1� #ðjjx1ÞjjÞ1n

ð28Þ
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where l1 ¼ fW>
1 br

0

1V
>
1 x1 �W>

1 oðeV>
1 x1Þ

2
, br1 ¼

rðbV>
1 x1Þ and br

0
1 is the partial derivative

br
0
1 ¼ oðrðbV>

1 x1ÞÞ=oðbV>
1 x1Þ, 1n ¼ 0:27851. Then,

the desired virtual input -d can be written as

-d ¼ �L
�

Jðg2Þ>ðb�mgÞuz �MJðg2Þ>€gd
þ k1ðm1 � Jðg2Þ> _gdÞ þ k2M

�1e2 þM�1e1

þ #ðjjx1ÞjjÞcW>
1 rðbV>

1 x1Þ þ ð1� #ðjjx1ÞjjÞdn1
�

ð29Þ

where L ¼ H>ðHH>Þ�1
, with ðHH>Þ being invert-

ible by choosing q properly [58].

It can be further obtained the control law for thrust

force

T ¼ h1-d; ð30Þ

the desired angular velocity

m2d ¼ h2-d; ð31Þ

and the update laws for cW1, bV1

_
cW1 ¼ CW1

#ðjjx1jjÞðbr1 � br
0

1
bV>
1 x1Þe>2 M

_
bV1 ¼ CV1

#ðjjx1jjÞx1e>2 McW>
1 br

0

1

ð32Þ

where h1 ¼ ½12�2; 02�3�, h2 ¼ ½03�2 13�3�; CW1
and

CV1
are positive definite, diagonal matrices.

In order to avoid estimation drift and ensure

kcW1k2F �Wm1; Wm1 [ 0, we design the update laws

for
_
cW1 by using a projection modified from [60],

given by

_
cW1 ¼

CW1
z1e

>
2 M; if trðcW>

1
cW1Þ\Wm1

or trðcW>
1
cW1Þ ¼ Wm1 and e>2 M

cW>
1 z1\0

CW1
z1e

>
2 M� CW1

e>2 M
cW>

1 z1

trðcW>
1
cW1Þ

cW1

if trðcW>
1
cW1Þ ¼ Wm1 and e>2 M

cW>
1 z1 � 0

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð33Þ

where z1 ¼ #ðjjx1jjÞðbr1 � br
0

1
bV>
1 x1Þ. Similarly, it is

guaranteed that kbV1k2F �Vm1; Vm1 [ 0 by rewriting

the update law for V1 as

_
bV1 ¼

CV1
x1z2; if trðbV>

1
bV1Þ\Vm1 or trðbV>

1
bV1Þ

¼ Vm1 and z2 bV
>
1 x1\0

CV1
x1z2 � CV1

z2 bV
>
1 x1

trðbV>
1
bV1Þ

bV1; if trðbV>
1
bV1Þ

¼ Vm1 and z2 bV
>
1 x1 � 0

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð34Þ

where z2 ¼ #ðjjx1jjÞðe>2 McW>
1 br

0

1Þ.
Step 3Now, we introduce the third tracking error as

e3 ¼ m2 � m2d: ð35Þ

Substituting (30), (33), (34) and (35) into (28), one

obtains

_Vb � � a1 þ e>1 qþ #ðjjx1jjÞ
�

e>2 M�1ðx1Þ � e>2 Ml1

�

þ e>2 MHh>2 e3 þ ð1� #ðjjx1ÞjjÞ1n:

ð36Þ

Consider the following Lyapunov function with e3 as

Vc ¼ Vb þ
1

2
e>3 Ie3: ð37Þ

The time derivative of Vc is

_Vc � � a2 þ e>1 qþ #ðjjx1jjÞ
�

e>2 M�1ðx1Þ � e>2 Ml1

�

þ e>3 ðsþ dm2

� Ih2 _-d þ k3e3 þ h2H
>M>e2Þ

þ ð1� #ðjjx1ÞjjÞ1n;

ð38Þ

where a2 ¼ a1 þ k3e>3 e3, the expression of _-d is given

as

_-d ¼ � _L
�

Jðg2Þ>ðb�mgÞuz �MJðg2Þ>€gd
þ k1ðm1 � Jðg2Þ> _gdÞ þ k2M

�1e2

þM�1e1 þ cW>
1 rðbV>

1 x1Þ
�

� L
�

� Sðm2ÞJðg2Þ>ðb�mgÞuz

þMSðm2ÞJðg2Þ>€gd �MJðg2Þ>g
ð3Þ
d

þ k1Sðm2ÞJðg2Þ> _gd

� k1Jðg2Þ
>€gd þM�1 _e1

þ #ðjjx1jjÞ
_
cW

>
1 rðbV>

1 x1Þ þ b
�

ð39Þ

where
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b ¼ k2M
�1 _e2 þ k1 _m1 þ _#ðjjx1jjÞcW>

1 rðbV>
1 x1Þ

þ #ðjjx1jjÞcW>
1 _rðbV>

1 x1Þ
� _#ðjjx1jjÞdn1 þ ð1� #ðjjx1ÞjjÞ _dn1

ð40Þ

contains unknown term dm1 . For simplicity, we firstly

remove the unknown term from _m1 and define

_m1 ¼ �M�1Sðm2ÞMm1 þM�1nm1T

þM�1Jðg2Þ>ðb�mgÞuz:
ð41Þ

Then, b can be rewritten as b ¼ bþ ob=om1dm1 , and

all terms in b are known.

Substituting (39) into (38), _Vc becomes

_Vc � � a2 þ e>1 qþ #ðjjx1jjÞðe>2 M�1ðx1Þ

� e>2 Ml1Þ þ e>3

�

sþ k3e3 þ h2H
>M>e2

� Ih2ð _-d � LbÞ þ f2

�

þ ð1� #ðjjx1ÞjjÞ1n;

ð42Þ

where _-d ¼ _-d þ Lb and

f2 ¼ dm2 þ Ih2Lðob=om1Þdm1 : ð43Þ

Note that f2 includes unknown terms dm1 and dm2 ;

similarly, we use multilayer NNs to estimate f2, given

by

f2 ¼ W>
2 rðV>

2 x2Þ þ �2ðx2Þ ð44Þ

where

x2 ¼ ½1; ŵ11; . . .; ŵ43; ðorðm1Þ=om1Þ>; m>1 ; m>2 ;
ðJðg2Þ> _gdÞ>�> 2 R25�1:

The NNs approximation for f2 is given as

f̂2 ¼ cW>
2 rðbV>

2 x2Þ ð45Þ

where cW2, bV2 and fW2 ¼ cW2 �W2, eV2 ¼ bV2 � V2

represent the estimation of the ideal weight matrices

and estimation errors, respectively. To achieve global

stability, similar to the definition of (26), f̂n2 is

introduced as

f̂n2 ¼ #ðjjx2jjÞcW>
2 rðbV>

2 x2Þ þ
�

1� #ðjjx2jjÞ
�

dn2

ð46Þ

where

dn2 ¼
h

fn21 tanh
� u>x e3fn21

1

�

; fn21

tanh
� u>y e3fn22

1

�

; fn21 tanh
� u>z e3fn23

1

�i

and ju>x f2j � fn21 ; ju>y f2j � fn22 ; ju>z f2j � fn23 , and

fn21 ; fn22 ; fn23 are known positive numbers.

Define the last control Lyapunov function as

Vd ¼ Vc þ
1

2
trðfW>

2 C
�1
W2

fW2Þ þ
1

2
trðeV>

2 C
�1
V2

eV2Þ:

ð47Þ

Taking the derivative of Vd with respect to time t, it

can be obtained that

_Vd � � a2 þ e>1 qþ #ðjjx1jjÞ
�

e>2 M�1ðx1Þ � e>2 Ml1

�

þ #ðjjx2jjÞ
�

e>3 �2ðx2Þ � e>3 l2

�

þ e>3

�

sþ k3e3

þ h2H
>M>e2 þ #ðjjx2jjÞcW>

2 rðbV>
2 x2Þ

þ
�

1� #ðjjx2jjÞ
�

dn2 � Ih2ð _-d � LbÞ
�

� e>3
fW>

2 ðbr2 � br
0

2
bV>
2 x2Þ þ trðfW>

2 C
�1
W2

_
cW2Þ

� e>3
cW>

2 br
0

2
eV>
2 x2 þ trðeV>

2 C
�1
V2

_
bV2Þ

þ ð1� #ðjjx1ÞjjÞ1n þ ð1� #ðjjx2ÞjjÞ1n:
ð48Þ

where l2 ¼ fW>
2 br

0
2V

>
2 x2 �W>

2 oðeV>
2 x2Þ

2
, br2 ¼

rðbV>
2 x2Þ and br

0
2 is the partial derivative

br
0
2 ¼ oðrðbV>

2 x2ÞÞ=oðbV>
2 x2Þ. Choose the last control

law, torque, as

s ¼� ðk3e3 þ h2H
>M>e2 þ cW>

2 rðbV>
2 x2Þ

þ Ih2ð _-d � LbÞÞ
ð49Þ

the update law for cW2

_
cW2 ¼

CW2
z3e

>
3 ; if trðcW>

2
cW2Þ\Wm2

or trðcW>
2
cW2Þ ¼ Wm2 and e>3

cW>
2 z3\0

CW2
z3e

>
3 � CW2

e>3
cW>

2 z3

trðcW>
2
cW2Þ

cW2

if trðcW>
2
cW2Þ ¼ Wm2 and e>3

cW>
2 z3 � 0

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð50Þ

where Wm2 [ 0, z3 ¼ #ðjjx2jjÞðbr2 � br
0
2
bV>
2 x2Þ. And

the update law for bV2
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_
bV2 ¼

CV2
x2z4; if trðbV>

2
bV2Þ\Vm2

or trðbV>
2
bV2Þ ¼ Vm2 and z4 bV

>
2 x2\0

CV2
x2z4 � CV2

z4 bV
>
2 x2

trðbV>
2
bV2Þ

bV2;

if trðbV>
2
bV2Þ ¼ Vm2 and z4 bV

>
2 x2 � 0

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð51Þ

where Vm2 [ 0, z4 ¼ #ðjjx2jjÞe>3 cW>
2 br

0
2. Substituting

(49), (50), (51) to (48), one gets

_Vd � � a2 þ e>1 qþ #ðjjx1jjÞe>2 ðM�1ðx1Þ �Ml1Þ
þ #ðjjx2jjÞe>3 ð�2ðx2Þ � l2Þ þ ð1� #ðjjx1ÞjjÞ1n
þ ð1� #ðjjx2ÞjjÞ1n:

ð52Þ

Theorem 1 For an underactuated autonomous

vehicle modeled by (1), (4), through designing control

laws (30), (49) and update laws (33), (34), (50), (51),

the vehicle is able to track a smooth reference

trajectory in the presence of unmodeled dynamic

terms and time-varying disturbances and error terms

e1; e2; e3 converge to an arbitrarily small tube

centered at the origin. Consequently, global uniformly

ultimately bounded is achieved. Meanwhile, the esti-

mated cW1; cW2; bV1; bV2 are guaranteed to be

bounded and satisfying

trðcW>
1
cW1Þ�Wm1; trðbV>

1
bV1Þ�Vm1; trðcW>

2
cW2Þ

�Wm2; trðbV>
2
bV2Þ�Vm2;

where Wm1; Vm1; Wm2; Vm2 are positive numbers.

Proof The proof is presented in the ‘‘Appendix.’’ h

3.2 Extended controller with measurement noises

To simulate the actual operation scenario, we take the

measurement noises into consideration. White noise is

added to the position g1, linear velocity m1 and angular

velocity m2 of the AUV. To suppress the measurement

noises’ harmful effects, we let g1, m1, m2 pass through a

second-order linear tracking differentiator [61, 62] to

obtain an estimation of these values as follows:

_g1f ¼ g1m

_g1m ¼ �k2g1ðg1f � g1Þ � 2kg1g1m

(

ð53Þ

_m1f ¼ m1m

_m1m ¼ �k2m1ðm1f � m1Þ � 2km1m1m

(

ð54Þ

_m2f ¼ m2m

_m2m ¼ �k2m2ðm2f � m2Þ � 2km2m2m

(

ð55Þ

where kg1 ; km1 ; km2 [ 0, g1f , m1f , m2f are the filtered

position, linear velocity and angular velocity.

Remark 2 As stated by [62], the tracking differen-

tiator (53), (54), (55) assures that the state arrives at the

steady state in a finite time T. Namely, there exist

constants g�1i, m�1i, m�2i, such that jg1i � g1mij � g�1i,
jm1i � m1mij � m�1i, jm2i � m2mij � m�2i; i ¼ 1; 2; 3.

4 Numerical examples

Numerical examples are presented in this section to

demonstrate the robustness and effectiveness of the

proposed controller. In the presence of unmodeled

dynamic terms and external time-varying distur-

bances, the multilayer NNs-based controller is simu-

lated and compared with the single-layer NNs-based

controller.

4.1 Vehicle parameters setting

Referring from [63], physical parameters of the AUV

are configured as m ¼ 54:54 kg; b ¼ 53:4N; X _u ¼
�7:6e� 3; Y _v ¼ �5:5e� 2; Z _w ¼ �2:4e� 1; Ix ¼
13:58; Iy ¼ 20:38; Iz ¼ 13:587; L _p ¼ �1e� 3;

M _q ¼ �1:7e� 2; N _r ¼ �3:4e� 3. The unknown

terms dm1 ¼ ½dm11 ; dm12 ; dm13 �
>
, dm2 ¼ ½dm21 ; dm22 ; dm23 �

>

are chosen randomly and assumed to be very large.

The detailed expressions are given in Table 2, with

w1 ¼ 0:05; w2 ¼ 0:03, m11 ¼ u>x m1; m12 ¼ u>y m1;

m13 ¼ u>z m1; m21 ¼ u>x m2; m22 ¼ u>y m2 and m23 ¼ u>z m2.

The reference trajectory is chosen as

gd ¼ ½30 cosðp=300tÞ; 30 sinðp=300tÞ; 0:02t�> ðmÞ:

4.2 Control parameters setting

Control parameters include control gains (k1; k2; k3),
estimation gains (CW1

, CV1
, CW2

, CV2
) and neuron

numbers. To obtain desirable tracking and estimation
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performance, we need to choose them properly.

Theoretically, larger control gains will increase the

convergence rate and reduce the ultimate tracking

errors. However, larger k1; k2; k3 will lead to more

chattering which is an undesirable property from a

practical view. For estimation gains and neuron

numbers, the theoretical tuning guideline is to (i) use

constant estimation gains, but increase the number of

neurons until the estimation performance will not be

improved anymore; (ii) increase the values of estima-

tion gains to enhance the learning rate. Nonetheless,

too many neurons will cost large computational

burden and too large CW1
, CV1

, CW2
, CV2

could cause

instability [49]. Consequently, we need to find a trade-

off between the robustness and ultimate trajectory

tracking accuracy.

Table 3 Ultimate bounds and root-mean-square errors (RMSEs) of error terms obtained from the proposed control method and the

controller with single-layer NNs with smaller (SLNN-S) and larger estimation gains (SLNN-L)

Methods Ultimate bounds RMSE

ke1k ke2k ke3k ke1k ke2k ke3k

Proposed method 0.0852 0.0034 0.0115 0.0845 0.0024 0.0045

SLNN-L 0.1095 0.1150 0.0197 0.0894 0.0796 0.0107

SLNN-S 0.1893 0.3704 0.1200 0.1254 0.2516 0.0728
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Fig. 5 Unknown term f1 ¼ ½f11; f12; f13�> and its estimation

f̂1 ¼ ½f̂11; f̂12; f̂13�>

-2

0

2

-2

0

2

0 5 10 15 20

t [sec]

0

20

40

0 0.05 0.1
0

20
40

Fig. 4 Tracking errors e1, e2, e3 of the multilayer NNs-based

controller

Table 2 Unmodeled terms

and external disturbances

for an underwater vehicle

Symbol Expression

dm11 10ðm11 þ m11m12 þ 2m12m13Þ þ 5ðcosðw1tÞ þ sinðw2tÞÞ
dm12 10ðm11m12 þ m12 þ 2m13Þ þ 10 sinðw1tÞ cosðw2tÞ
dm13 10ð2m12m13 þ m11m12m13Þ þ 2 cosðw1tÞ þ 8 sinðw1tÞ
dm21 5ðm11m23 þ m11m21 þ m21m22 þ 2m13m23Þ þ 5 cosðw2tÞ þ 2:5 sinðw1tÞ
dm22 5ð2m11m12m21 þ m12m22 þ m13m23Þ þ 5 sinðw2tÞ cosðw1tÞ þ 2:5 sinðw2tÞ
dm23 5ð2m11m22 þ m12m21 þ m13m23Þ þ 7:5 sinðw2tÞ þ 2:5 cosðw1tÞ
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4.3 Simulation results without measurement

noises

4.3.1 Trajectory tracking results

Figure 4 further shows the specific tracking errors e1,

e2, e3, where we can see that all of these errors

converge to the neighborhood of zeros after some

fluctuation at the beginning. To directly display the

disturbance suppression ability, the approximation of

unknown terms and disturbances is shown in Figs. 5

and 6. Both of the estimated uncertainties f̂1 and f̂2
converge to the neighborhood of their corresponding

desired real functions denoted by f1 and f2, respec-

tively. To further demonstrate that the vehicle can

converge to the reference trajectory with larger initial

position errors, Figs. 7 and 8 are presented. It is

obtained that the proposed method is able to steer the

vehicle moving along the reference trajectory closely
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Fig. 7 Reference and real

trajectories of an AUV with

initial positions

½0; 30; 0�> ðmÞ and
½100; 20; �50�> ðmÞ,
respectively, in a 3D, b yz
plane, c xy plane, and d xz
plane
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Fig. 6 Unknown term f2 ¼ ½f21; f22; f23�> and its estimation

f̂2 ¼ ½f̂21; f̂22; f̂23�>
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with initial positions ½100; 20; �50�> ðmÞ and

½50; �70; �35�> ðmÞ.

4.3.2 Comparison results

To validate the performance of the proposed multi-

layer NNs-based controller, we compare it with the

single-layer NNs-based tracking controller. Figures 9

and 10 present the tracking error terms, and their

corresponding ultimate bounds (UBs) and root-mean-

square errors (RMSEs) are given in Table 3. It

concludes that (i) larger estimation gains can help to

improve the final estimation performance, validated

by the result that the UBs and RMSEs of the error

terms are obtained from the single-layer NNs-based

controller. It is found that larger estimation gains are

smaller than those obtained from the single-layer

NNs-based controller with smaller estimation gains;

(ii) larger estimation gains could cause undesired

instability or oscillation. As shown in Fig. 10, the

angular velocity error jje3jj is obtained from the

single-layer NNs-based controller with larger estima-

tion gains; at around t ¼ 1 ½s�, unwanted peaks appear;
(iii) the proposed controller achieves smoother con-

vergence with smaller UBs and RMSEs.

4.4 Simulation results with measurement noises

To simulate the real operation scenarios, we add white

noises to g1, m1 and m2. Letting them pass through

filters defined by (53), (54), (55), cleaner states are

obtained and shown in Figs. 11, 12 and 13. The filtered

states denoted by the dashed lines in these diagrams

are smoother. Furthermore, Fig. 14 gives the tracking

errors e1; e2; e3, from which we can see that all these

errors converge to the neighborhood of zero.
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Fig. 8 Reference and real

trajectories of an AUV with

initial positions

½0; 30; 0�> ðmÞ and
½50; �70; �35�> ðmÞ,
respectively, in a 3D, b yz
plane, c xy plane, and d xz
plane
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5 Conclusion

In this paper, a solution is proposed to solve the

problem of trajectory tracking for an underactuated

underwater vehicle in the presence of unmodeled

dynamic terms and external time-varying

disturbances. To obtain robust performance, we use

multilayer NNs to approximate the unmodeled

dynamic terms and disturbances. The application of

smooth projectors ensures that the estimated weights

are bounded. As a consequence, global uniformly

ultimately bounded is achieved and verified via

Lyapunov stability criteria and simulation results.
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One of our future directions is to take unavailable

states into consideration when deriving the control

laws. Another future work is to extend the control

method to other types of autonomous vehicles such as

surface or aerial vehicle.
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Appendix

Proof of Theorem 1 Rewrite _Vd as

_Vd � � k1e
>
1 M

�1e1 � k2e
>
2 e2 � k3e

>
3 e3

þ e>1 qþ #ðjjx1jjÞe>2
�

M�1ðx1Þ �Ml1

�

þ #ðjjx2jjÞe>3 ð�2ðx2Þ � l2Þ þ a

ð56Þ

where a ¼ 21n is an arbitrarily small positive constant,

and

l1 ¼ fW>
1 br

0

1V
>
1 x1 �W>

1 oðeV>
1 x1Þ

2;

l2 ¼ fW>
2 br

0

2V
>
2 x2 �W>

2 oðeV>
2 x2Þ

2;

and

x1 ¼ ½1; m>1 �
>;

x2 ¼ ½1; ŵ11; . . .; ŵ43; ðorðm1Þ=om1Þ>;
m>1 ; m

>
2 ; ðJðg2Þ

> _gdÞ
>�>:

It is noted that m1 and m2 can be written as

m1 ¼ e2 þ Jðg2Þ> _gd � k1M
�1e1 þ q;

m2 ¼ e3 þ h2-d

where -d is defined in (29). Inspired by [57], the

following facts are introduced, given as, h

Fact 1 For each time t, x1 is bounded by

jjx1jj � ða0 þ a1n1Þ þ a2jje1jj þ a3jje2jj

where ai; i ¼ 0; 1; 2; 3, are computable positive

constants.

Fact 2 For each time t, x2 is bounded by

jjx2jj � ðb0 þ b1n1 þ b2n2 þ b3Wmax þ b4r
0
maxÞ

þ b4jje1jj þ b5jje2jj þ b6jje3jj

where bi; i ¼ 0; 1; . . .; 6, are computable positive

constants.

Fact 3 For radial basis functions activation func-

tions, the higher-order terms oðeV>
1 x1Þ

2
and oðeV>

2 x2Þ
2

satisfy the following inequalities:

oðeV>
1 x1Þ

2 � c10 þ jjeV1jjFðc11 þ c12jje1jj þ c13jje2jjÞ
oðeV>

2 x2Þ
2 � c20 þ jjeV2jjFðc21 þ c22jje1jj

þ c23jje2jj þ c24jje3jjÞ

where c1i; c2j; i ¼ 0; 1; 2; 3; j ¼ 0; 1; . . .; 4 are com-

putable positive constants.

Fact 4 For l1 and l2, they satisfy

jjl1jj � d10 þ jjeZ1jjF
�

d11 þ d12jje1jj þ d13jje2jj
�

jjl2jj � d20 þ jjeZ2jjFðd21 þ d22jje1jj þ d23jje2jj þ d24jje3jjÞ

where d1i; d2j; i ¼ 0; 1; 2; 3; j ¼ 0; 1; . . .; 4 are

computable positive constants, and

eZ1 ¼ diagðfW1; eV1Þ, eZ2 ¼ diagðfW2; eV2Þ.

Fact 5 As we have assumed jjWjjF �Wmax,

jjVjjF �Vmax and guaranteed jjŴ1jj2F �Wm1,

jjV̂1jj2F �Vm1, jjŴ2jj2F �Wm2, jjV̂2jj2F �Vm2, we

thereby get the result that

jjeZ1jjF � zm1; jjeZ2jjF � zm2

where zm1; zm2 are computable positive constants.

Use the following inequalities:

1. �k1e>1 M
�1e1 � � k1cminðM�1Þjje1jj2

2. e>2 M�1ðx1Þ� cmaxðMÞ
� jje2jj2

2e
þ e�2max

2

�

3. e>1 q�
jje1jj2

2e
þ ejjqjj2

2
, e>3 �2ðx2Þ�

jje3jj2

2e
þ e�2max

2

4. �e>2 Ml1 � cmaxðMÞ
� f 210
2e

þ ejje2jj2

2
þ f11jje1jj2

2e
þ

f11ejje2jj2

2
þ f12jje2jj2

�
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5. �e>3 l2 �
f 220
2e

þ ejje3jj2

2
þ f21jje1jj2

2e
þ f21ejje3jj2

2
þ

f22jje2jj2

2e
þ f22ejje3jj2

2
þ f23jje3jj2

where cminðM�1Þ and cmaxðMÞ are minimum and

maximum eigenvalues of M�1 and M, respectively,

f10; f11; f12; f20; f21; f22; f23 are computable positive

constants, and e is an arbitrarily small positive

constant. Based on these above inequalities, and the

facts 0�#ðjjx1jjÞ � 1; 0�#ðjjx1jjÞ � 1, (56) is

rewritten as

_Vd � �
�

k1cminðM�1Þ � 1

2e
� cmaxðMÞf11

2e
� f11

2e

�

jje1jj2

�
�

k2 �
cmaxðMÞ

2e
� cmaxðMÞe

2

� cmaxðMÞf11e
2

� cmaxðMÞf12 �
f22
2

�

jje2jj2 �
�

k3 �
e
2
� f21e

2
� f22e

2
� f23

�

jje3jj2

þ ejjqjj2

2
þ cmaxðMÞ�2max

2
þ e�2max

2
þ cmaxðMÞ

2e
f 210 þ

f 220
2e

¼ �j1ke1k2 � j2ke2k2 � j3ke3k2 þ 1;

ð57Þ

with

j1 ¼ k1cminðM�1Þ � 1

2e
� cmaxðMÞf11

2e
� f11

2e
;

j2 ¼ k2 �
cmaxðMÞ

2e
� cmaxðMÞe

2
� cmaxðMÞf11e

2

� cmaxðMÞf12 �
f22
2
;

j3 ¼ k3 �
e
2
� f21e

2
� f22e

2
� f23;

1 ¼ ejjqjj2

2
þ cmaxðMÞ�2max

2
þ e�2max

2

þ cmaxðMÞ
2e

f 210 þ
f 220
2e

:

By choosing parameters properly, we can guarantee

that j1; j2; j3 are positive definite. Define a ¼
½ke1k; ke2k; ke3k�> and jmin ¼ minfj1; j2; j3g; one
further can rewrite (57) as

_Vd � � jmina
>aþ 1 ð58Þ

which is negative definite for kak[
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1=jmin

p

which

can be made arbitrarily small by adjusting 1 and jmin.

As a result, global uniformly ultimately bounded is

achieved.

At last, inspired by [60], we can prove that the

estimated weights cW1; cW2; bV1; bV2 are bounded, and

the following inequalities are satisfied:

1. �#ðjjx1jjÞe>2 MfW>
1

�

br1 � br
0
1
bV>
1 x1

�

þ trðfW>
1 C

�1
W1

_
cW 1Þ

� 0

2. �#ðjjx1jjÞe>2 McW>
1 br

0
1
eV>
1 x1 þ trðeV>

1 C
�1
V1

_
bV1Þ� 0

3. �#ðjjx2jjÞe>3 fW>
2 ðbr2 � br

0
2
bV>
2 x2Þ þ trðfW>

2 C
�1
W2

_
cW2Þ

� 0

4. �#ðjjx2jjÞe>3 cW>
2 br

0

2
eV>
2 x2 þ trðeV>

2 C
�1
V2

_
bV2Þ� 0.

It is noted that due to the above inequalities, the

original _Vd

_Vd � � k1e
>
1 M

�1e1 � k2e
>
2 e2 � k3e

>
3 e3 þ e>1 qþ #ðjjx1jjÞe>2

�

M�1ðx1Þ �Ml1

�

þ #ðjjx2jjÞe>3 ð�2ðx2Þ � l2Þ

þ a� #ðjjx1jjÞe>2 MfW>
1

�

br1

� br
0

1
bV>
1 x1

�

þ trðfW>
1 C

�1
W1

_
cW1Þ � #ðjjx1jjÞe>2 McW>

1 br
0

1
eV>
1 x1

þ trðeV>
1 C

�1
V1

_
bV1Þ � #ðjjx2jjÞe>3 fW>

2 ðbr2 � br
0

2
bV>
2 x2Þ

þ trðfW>
2 C

�1
W2

_
cW2Þ � #ðjjx2jjÞe>3 cW>

2 br
0

2
eV>
2 x2

þ trðeV>
2 C

�1
V2

_
bV2Þ

ð59Þ

can be rewritten as (56).
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